E: ISSN No. 2349-9435 Periodic Research Quasi Dα- Normal Spaces, πGDα-Closed Sets and Some Functions

Abstract

In aim this paper, we introduce a new concept of quasi-normal spaces called quasi $D\alpha$ -normal spaces and obtain characterizations and preservation theorems of quasi $D\alpha$ -normal. The notion can be applied for investigating many other properties.

Keywords: D α -closed, D α g-closed π gD α -closed, D α -open D α g-open, π gD α -open sets, π gD α -closed, almost π gD α -closed, π gD α -continuous and almost π gD α -continuous functions, D α -normal spaces, mildly D α -normal spaces and quasi D α -normal spaces.

2010 AMS Subject classification 54D15, 54A05, 54C08.

Introduction

In this paper, we introduce the notion of D α g-closed, D α g-open, π gD α -closed, π gD α -open sets, π gD α -closed, almost π gD α -closed, π gD α -closed, continuous and almost π gD α -continuous functions and its properties are studied. Further we introduce a new concept of quasi-normal spaces called quasi D α -normal spaces and obtain characterizations and preservation theorems of quasi D α -normal.

Aim of the Study

In aim this paper, we introduce a new class of sets called Dagclosed, $\pi g D \alpha$ -closed sets and its properties are studied and we introduce a new concept of quasi-normal spaces called quasi $D \alpha$ -normal spaces by using $D \alpha$ -open sets due to Sayed and Khalil¹¹ in topological spaces and obtained several characterization and preservation theorems for quasi $D \alpha$ normal spaces. We insure the existence of utility for new results using separation axioms in topological spaces.

Review of Literature

The notion of quasi normal space was introduced by Zaitsev¹³. Dontchev and Noiri² introduce the notion of π g-closed sets as a weak form of g-closed sets due to Levine [6]. By using π g-closed sets, Dontchev and Noiri [2] obtained a new characterization of quasi normal spaces. Sayed and Khalil [11] introduced the concept of D α -closed sets and discuss some of their basic properties. Recently, Reena et al. [8] introduced the concepts of quasi b⁺-normal spaces in topological spaces by using b⁺ open sets in topological spaces and obtained some characterizations of such spaces. **Preliminaries**

Definition

A subset A of a topological space X is called.

Regular Closed [12]) If A = Cl(Int(A)).

Generalized Closed [4] (Briefly, g-closed) if $CI(A) \subset U$ whenever $A \subset U$ and U is open in X .

 $\pi g\text{-closed}$ [2] If Cl(A) \subset U whenever A \subset U and U is $\pi\text{-open}$ in X. $\alpha\text{-closed}$ [7]

If $Cl(Int(Cl(A))) \subseteq A .\alpha g$ -closed [5]

If α -Cl(A) \subseteq U whenever A \subseteq U and U is in X.

 $\pi g \alpha$ -closed [1] If α -Cl(A) \subset U whenever A \subset U and U is π -open in X.

The finite union of regular open sets is said to be π -open. The complement of π -open set is said to be π -closed set. The complement of regular

M.C. Sharma Associate Professor, Deptt.of Mathematics, N.R.E.C. College, Khurja, U.P.

Poonam Sharma

Research Scholar, Deptt.of Mathematics, Mewar University, Gangrar Chittorgarh, Rajasthan P: ISSN No. 2231-0045

E: ISSN No. 2349-9435

closed (resp. g-closed, π -open, π g-closed, α -closed, α g-closed, π g α -closed) set is said to be **regular open** (resp. g-open, π -open, π g-open, α -open, α g-open, π g α -open) sets. The intersection of all g-closed sets containing A is called the g-closure of A [3] and denoted by Cl*(A), and the g-interior of A [9] is the unionof all g-open sets contained in A and is denoted by Int*(A).

Definition

A subset A of a topological space X is called, **D** α -closed [11] If Cl*(Int(Cl*(A))) \subseteq A.

Dag-closed If $Cl^{D}_{\alpha}(A) \subseteq U$ whenever $A \subseteq U$,

and U is open in X.

 $\pi g D \alpha \text{-closed If } \mathrm{Cl}^{\mathrm{D}}_{\alpha}(A) \subset U \text{ whenever } A \subset U \text{ and } U \text{ is } \pi \text{-open in } X.$

The complement of $D\alpha$ closed (resp. $D\alpha g$ closed, $\pi g D\alpha$ -closed) sets is said to be $D\alpha$ -open (resp. $D\alpha g$ -open, $\pi g D\alpha$ -open).The intersection of all $D\alpha$ -closed subsets of X containing A (i.e. super sets of A) is called the $D\alpha$ -closure of A and is denoted by $Cl^{D}_{\alpha}(A)$. The union of all $D\alpha$ -open sets contained in A is called $D\alpha$ -interior of A and is denoted by $Int^{D}_{\alpha}(A)$.The family of all $D\alpha$ -open (resp. $D\alpha$ -closed) sets of a space X is denoted by $D\alpha O(X)$ (resp. $D\alpha C(X)$).

Theorem [11].

Let X be a topological space. Then

- 1. Every α -closed subset of X is $D\alpha$ -closed.
- 2. Every g-open subset of X is $D\alpha$ -open.

We have the following implications for the properties of subsets.

closed	\Rightarrow	g-close	\Rightarrow	πg-closed
\Downarrow		\downarrow		\downarrow
α-closed	\Rightarrow	αg-closed	\Rightarrow	πgα-closed
11		11		- 11

 $D\alpha$ -closed \Rightarrow $D\alpha$ g-closed \Rightarrow π g $D\alpha$ -closed Where none of the implications is reversible as can be seen from the following examples Example

Let X = {a, b, c, d} and τ = { ϕ , {a}, {c, d}, {a, c, d}, {d}, {a, d}, X. Then the set A = {a} is $\pi g \alpha$ -closed set as well $\pi g D \alpha$ -closed set but not g-closed set in X.

Example

Let X = {a, b, c, d} and $\tau = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, d, c\}, \{a, b, d\}, \{a, b, c\}, X\}$. Then the set A = {a, b} is $\pi g \alpha$ -closed set as well as $\pi g D \alpha$ -closed set but not αg -closed and not D αg closed set in X.Since A \subset {a, b, c} which is open by $Cl_{\alpha}^{D} \not\subset \{a, b, c\}$.

Example

Let X = {a, b, c, d } and τ = { ϕ , {a}, {c, d}, {a, c, d}, {a, d}, {x}. Then the set A = {c} is $\pi g \alpha$ -closed set as well as $\pi g D \alpha$ -closed set but not πg -closed set in X.

Theorem

- 1. Finite union of $\pi g D\alpha$ -closed sets are $\pi g D\alpha$ -closed.
- 2. Finite intersection of $\pi g D\alpha$ -closed need not be a $\pi g D\alpha$ -closed.

Periodic Research

 A countable union of πgDα-closed sets need not be a πgDα-closed.

Proof

- 1. Let A and B be $\pi g D\alpha$ -closed sets. Therefore $\operatorname{Cl}^D_\alpha(A) \subset U$ and $\operatorname{Cl}^D_\alpha(B) \subset U$ whenever $A \subset U, B \subset U$ and U is π -open. Let $A \cup B \subset U$ where U is π -open. Since $\operatorname{Cl}^D_\alpha(A \cup B) \subset \operatorname{Cl}^D_\alpha(A) \cup \operatorname{Cl}^D_\alpha(B) \subset U$, we have $A \cup B$ is $\pi g D\alpha$ -closed.
- 2. Let X = {a, b, c, d} and τ = { ϕ , {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, X}. Let A = {a, b, c}, B = {a, b, d}. A and B are π gD α -closed sets. But A \cap B = {a, b, d}. b} \subset {a, b} which is π -open. Cl^D_{α}(A \cap B) $\not\subset$ {a, b}. Hence A \cap B is not π gD α -closed.
- 3. Let R be the real line with the usual topology. Every singleton is $\pi g D\alpha$ -closed. But, A = {1/i : i = 2, 3, 4} is not $\pi g D\alpha$ -closed. Since A \subset (0, 1) which is π -open but $Cl^{D}_{\alpha}(A) \not\subset$ (0, 1).

Theorem

If A is $\pi g D \alpha\text{-closed}$ and $A \subset B \subset Cl^D_\alpha(A)$ then B is $\pi g D \alpha\text{-closed}.$

Proof

Since A is $\pi g D \alpha$ -closed, $Cl^D_{\alpha}(A) \subset U$ whenever $A \subset U$ and U is π -open. Let $B \subset U$ and U be π -open. Since $B \subset Cl^D_{\alpha}(A)$, $Cl^D_{\alpha}(B) \subset Cl^D_{\alpha}(A) \subset U$. Hence B is $\pi g D \alpha$ -closed.

Theorem

Let A be a $\pi g D\alpha$ -closed set in X. Then $\operatorname{Cl}_{\alpha}^{D}(A) - A$ does not contain any non empty π -closed set.

Proof

Let F be a non empty π -closed set such that $F \subset Cl^{D}_{\alpha}(A) - A$. Then $F \subset Cl^{D}_{\alpha}(A) \cap (X - A) \subset X$ - A implies $A \subset X - F$ where X - F is π -open.

Therefore $\operatorname{Cl}^{D}_{\alpha}(A) \subset X - F$ implies $F \subset (\operatorname{Cl}^{D}_{\alpha}(A)^{C}$. Now $F \subset \operatorname{Cl}^{D}_{\alpha}(A) \cap (\operatorname{Cl}^{D}_{\alpha}(A))^{C}$ implies F is empty. Reverse implication does not hold.

Corollary

Let A be $\pi g D\alpha$ -closed. A is $D\alpha$ -closed iff $Cl^D_{\alpha}(A) - A$ is π -closed.

Proof. Let A be D α -closed set then A = Cl^D_{α}(A) implies Cl^D_{α}(A) – A = ϕ which is π -closed.

Conversely if $Cl^D_{\alpha}(A) - A$ is π -closed then A is $D\alpha$ -closed.

Theorem

If A is π -open and $\pi g D\alpha$ -closed. Then A is $D\alpha$ -closed hence clopen.

Proof

Let A be regular open. Since A is $\pi g D \alpha$ -closed, $Cl^D_{\alpha}(A) \subset A$ implies A is $D\alpha$ -closed. Hence A is closed (Since every π -open, $D\alpha$ -closed set is closed). Therefore A is clopen.

Theorem

For a topological space X, the following are equivalent :

- 1. X is extremally disconnected.
- 2. Every subset of X is $\pi g D\alpha$ -closed.
- 3. The topology on X generated by $\pi g D\alpha$ -closed sets.

E: ISSN No. 2349-9435

Proof

(a) \Rightarrow (b). Assume X is extremally disconnected. Let $A \subset U$, where U is π -open in X. Since U is π -open , it is the finite union of regular open sets and X is extremally disconnected, U is finite union of clopen sets and hence U is clopen. Therefore $Cl^{D}_{\alpha}(A) \subset Cl(A) \subset Cl(U) \subset U$ implies A is $\pi g D \alpha$ -closed.

(b) \Rightarrow (a). Let A be reguler open set of X. Since A is π gD α -closed by **Theorem 2.11** A is clopen. Hence X is extremally disconnected. (b) \Leftrightarrow (c) is obvious.

Lemma[11]

If A is a subset of X, then 1. $X - Cl^{D}_{\alpha}(A) = Int^{D}_{\alpha}(X - A).$

2. $\operatorname{Cl}^{\mathrm{D}}_{\alpha}(\mathsf{X} - \mathsf{A}) = \mathsf{X} - \operatorname{Int}^{\mathrm{D}}_{\alpha}(\mathsf{A}).$

Theorem

A subset A of a topological space X is $\pi g D\alpha$ -open if $F \subset Int^D_{\alpha}(A)$ whenever F is π -closed and $F \subset A$.

Proof

Let F be π -closed set such that $F \subset A$. Since X - A is $\pi g D \alpha$ -closed and $X - A \subset X - F$ we have $F \subset Int_{\alpha}^{D}(A)$.

Conversely, Let $F \subset \operatorname{Int}^{D}_{\alpha}(A)$ where F is π -closed and $F \subset A$. Since $F \subset A$ and X - F is π -open, $\operatorname{Cl}^{D}_{\alpha}(X - A) = X - \operatorname{Int}^{D}_{\alpha}(A) \subset X - F$. Therefore A is $\pi g D \alpha$ -open.

Theorem

If, $Int^{D}_{\alpha}(A) \subset B \subset A$ and A is $\pi g D \alpha$ -open then B is $\pi g D \alpha$ -open.

Proof

Since, $Int^{D}_{\alpha}(A) \subset B \subset A$ using **Theorem 2.8**, $Cl^{D}_{\alpha}(X - A) \supset (X - B)$ implies B is $\pi g D\alpha$ -open. **Remark**

For any
$$A \subset X$$
, $\operatorname{Int}_{\alpha}^{D}(\operatorname{Cl}_{\alpha}^{D}(A)) - A)) = \phi$.

Theorem

If $A \subset X$ is $\pi g D \alpha \text{-} closed$ then $Cl^D_\alpha(A) - A$ is $\pi g D \alpha \text{-} open.$

Proof

Let A be $\pi g D\alpha\text{-closed}$ and F be a $\pi\text{-closed}$ set such that $F \subset {\rm Cl}^D_\alpha(A)$ – A. By Theorem 2.9

 $\label{eq:F} \begin{array}{ll} \mathsf{F} = \phi & \text{implies } \mathsf{F} \subset \mathrm{Int}^{D}_{\alpha}(\mathrm{Cl}^{D}_{\alpha}(\mathsf{A}) - \mathsf{A})). \end{array} \\ \textbf{By Theorem 2.14, } \mathrm{Cl}^{D}_{\alpha}(\mathsf{A}) - \mathsf{A} \text{ is } \pi g \mathsf{D} \alpha \text{-open.} \\ \text{Converse of the above theorem is not true.} \\ \textbf{Example} \end{array}$

Let X = {a, b, c } and τ = { ϕ , {a}, {b}, {a, b}, X}. Let A = {b}. Then A is not π gD α -closed but $Cl^{D}_{\alpha}(A) - A = {a, b} \pi$ gD α -open.

Quasi Dα-normal spaces

Definition

A topological space X is said to be $D\alpha$ -normal (resp. quasi $D\alpha$ -normal , mildly $D\alpha$ -normal) if for every pair of disjoint closed (resp. π -closed, regularly closed) subsets H, K of X, there exist disjoint $D\alpha$ -open sets U, V of X such that $H \subset U$ and $K \subset V$.

Example

Let X = {a, b, c, d} and τ = { ϕ , {a }, {b},{a, b}, {a, b, c, b, c }, X}. The pair of disjoint closed subsets of X

Periodic Research

are A = ϕ and B = {d}. Then D α -closed sets in X are X, ϕ , {a}, {b}, {c}, {d}, {c, d}, {a, d}, {b, c}, {a, c}, {b, d}, {a, c, d}, {b, c, d}. Also U = {b} and V = {c, d} are D α -open sets such that A \subset U and B \subset V. Hence X is D α -normal but it is not normal. **Example**

Let X = { a, b, c, d } and $\tau = \{ \phi, \{a\}, \{c\}, \{a, c\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X \}$. The pair of disjoint π closed subsets of X are A = {a} and B = {c}. Also U = {a} and V = {b, c, d} are open sets such that A \subset U and B \subset V. Hence X is quasi-normal as well as quasi D α -normal because every open set is D α -open set.

By the definitions and examples stated above, we have the following diagram:

 $\begin{array}{ccc} \text{normality} \ \Rightarrow \ \text{quasi-normality} \ \Rightarrow \ \text{mild-normality} \\ \Downarrow \ & \downarrow \ \$

 $D\alpha\text{-normality} \Rightarrow$ quasi $D\alpha\text{-normality} \Rightarrow$ mild $D\alpha\text{-normality}$

Theorem

For topological space \boldsymbol{X} , the following are equivalent:

a. X is quasi $D\alpha$ -normal.

- b. For any disjoint π -closed sets H and K, there exist disjoint D α g-open sets U and V such that $H \subset U$ and $K \subset V$.
- c. For any disjoint π -closed sets H and K, there exist disjoint $\pi g D \alpha$ -open sets U and V such that $H \subset U$ and $K \subset V$.
- d. For any π -closed set H and any π -open set V containing H, there exist a D α g-open set U of X such that $H \subset U \subset Cl^{D}_{\alpha}(U) \subset V$.
- e. For any π-closed set H and any π-open set V containing H, there exist a πgDα-open set U of X such that H ⊂ U ⊂ Cl^D_α(U) ⊂ V.

Proof

 $\begin{array}{l} (a)\Rightarrow(b),\,(b)\Rightarrow(c),\,(d)\Rightarrow(e),\,(c)\Rightarrow(d) \text{ and}\\ (e)\Rightarrow(a).\,(a)\Rightarrow(b). \end{array}$

Let X be quasi $D\alpha$ -normal. Let H, K be disjoint π -closed sets of X. By assumption, there exist disjoint $D\alpha$ -open sets U, V such that $H \subset U$ and $K \subset V$. Since every $D\alpha$ -open set is $D\alpha$ g-open, U,V are $D\alpha$ g-open sets such that $H \subset U$ and $K \subset V$.

(b) \Rightarrow (c). Let H, K be two disjoint π -closed sets. By assumption, there exists D α g-open sets U and V such that H \subset U and K \subset V. Since D α g-open set is π gD α -open, U and V are π gD α -open sets such that H \subset U and K \subset V.

(d) \Rightarrow (e). Let H be any π -closed set and V be any π -open set containing H. By assumption, there exist D α g-open set U of X such that H \subset U \subset $Cl^{D}_{\alpha}(U) \subset V$. Since every D α g-open set is π gD α -open, there exist π gD α -open sets U of X such that H \subset U \subset $Cl^{D}_{\alpha}(U) \subset V$.

(c) \Rightarrow (d). Let H be any π -closed set and V be any π -open set containing H. By assumption, there exist $\pi g D \alpha$ -open sets U and W such that $H \subset U$ and $X - V \subset W$. By **Theorem 2.14**, we get $X - V \subset Int^{D}_{\alpha}$ (W) and $Cl^{D}_{\alpha}(U) \cap Int^{D}_{\alpha}(W) = \phi$. Hence $H \subset U \subset Cl^{D}_{\alpha}(U) \subset X - Int^{D}_{\alpha}(W) \subset V$.

116

P: ISSN No. 2231-0045

E: ISSN No. 2349-9435

 $\begin{array}{l} (e) \Rightarrow (a). \mbox{ Let } H, \mbox{ K be any two disjoint } \pi\mbox{-closed set of } X. \mbox{ Then } H \ \sub \ X \ - \ K \ \mbox{ and } X \ - \ K \ \mbox{ is } \pi \ \mbox{-open. By assumption, there exist } \pi g \ D\alpha\mbox{-open set } G \ \mbox{ of } X \ \mbox{ such that } H \ \mbox{-} \ \mbox{ G} \ \mbox{ } \subset \ \mbox{ Cl}_{\alpha}^D(G) \ \mbox{ } \subset X \ \mbox{ - } K. \ \mbox{ Put } U \ \mbox{ = } Int^D_{\alpha}(G), \ V \ \mbox{ = } X \ \ \mbox{ - } Cl^D_{\alpha}(G). \ \mbox{ Then } U \ \mbox{ and } V \ \mbox{ are disjoint } D\alpha\mbox{-open sets of } X \ \mbox{ such that } H \ \mbox{ } \sqcup \ \mbox{ } U \ \mbox{ are disjoint } D\alpha\mbox{-open sets of } X \ \mbox{ such that } H \ \mbox{ } \sqcup \ \mbox{ } U \ \mbox{ are disjoint } D\alpha\mbox{-open sets of } X \ \mbox{ such that } H \ \mbox{ } \sqcup \ \mbox{ } U \ \mbox{ and } K \ \mbox{ } V. \ \mbox{ Some Functions } \end{array}$

Definition

A function $f: X \rightarrow Y$ is said to be

- 1. Almost closed [10](resp. almost $D\alpha$ -closed , almost $D\alpha$ g-closed) if f (F) is closed (resp. $D\alpha$ closed , $D\alpha$ g-closed) in Y for every $F \in RC(X)$.
- πgDα-closed (resp. almost πgDα-closed) if for every closed set (resp. regularly closed) F of X , f(F) is πgDα-closed in Y.
- 3. π -continuous [2] (resp. $\pi g\alpha$ -continuous[1], $\pi gD\alpha$ -continuous) if f⁻¹(F) is π -closed (resp. $\pi g\alpha$ -closed, $\pi gD\alpha$ -closed) in X for every closed set F of Y.
- Almost continuous [10] (resp. almost πcontinuous [2], almost πgα- continuous[1], almost πgDα-continuous) if f⁻¹(F) is closed (resp. π- closed, πgα-closed, πgDα-closed) in X for every regularly closed set F of Y.
- Rc-preserving [6] if f(F) is regularly closed in Y for every F∈ RC(X).

From the definitions stated above, we obtain the following diagram:

al.-closed \Rightarrow al.Da-closed \Rightarrow al. Dag-closed \Rightarrow al. $\pi g Da\text{-closed}$

Where al. = almost

Moreover, by the following examples, we realize that none of the implications is reversible. **Example**

 $\begin{array}{l} X = \{a,\,b,\,c,\,d\,\},\,\tau = \{\phi,\,X,\,\{c\},\,\{a,\,b,\,d\} \text{ and } \sigma \\ = \{\phi,\,\{a\},\,\,\{c,\,d\},\,\{a,\,c,\,d\}\,\{d\},\,\{a,\,d\},\,X\}. \text{ Let } f:\,(X,\,\tau)\rightarrow \\ (X,\,\sigma\,) \text{ be the identity function, then } f \text{ is } \pi g\alpha\text{-closed} \\ \text{as well as } \pi g D\alpha\text{-closed but not } \pi g\text{-closed}. \text{ Since } A = \\ \{c\} \text{ is not } \pi g\text{-closed in } (X,\,\sigma). \end{array}$

Example

Let X = {a, b, c, d}, $\tau = \{\phi, X, \{c\}, \{a, b, d\}, \{b, c\}, \{a, c, d\}, x\}$ and $\sigma = \{\phi, X, \{a\}, \{c, d\}, \{a, c, d\}, \{d\}, \{a, d\}\}$.Let f: (X, τ) \rightarrow (X, σ) be the identity function. Then f is almost $\pi g \alpha$ -closed as well as almost $\pi g D \alpha$ -closed but not $\pi g D \alpha$ -closed. Since A = {a} is not $\pi g D \alpha$ -closed **Theorem**

If f: $X \rightarrow Y$ is an almost π -continuous and $\pi g D \alpha$ -closed function, then f(A) is $\pi g D \alpha$ -closed in Y for every $\pi g D \alpha$ -closed set A of X. **Proof**

Let A be any $\pi g D \alpha$ -closed set A of X and V be any π -open set of Y containing f(A). Since f is almost π -continuous, f⁻¹(V) is π -open in X and A \subset f⁻¹(V). Therefore $Cl^{D}_{\alpha}(A) \subset$ f⁻¹(V) and hence f($Cl^{D}_{\alpha}(A)) \subset$ V. Since f is $\pi g D \alpha$ -closed, f($Cl^{D}_{\alpha}(A)$) is

Periodic Research $\pi g D\alpha$ -closed in Y. And hence we obtain $Cl^{D}_{\alpha}(f(A)) \subset$

 Cl^{D}_{α} (f($Cl^{D}_{\alpha}(A)$)) \subset V. Hence f(A) is $\pi gD\alpha$ -closed in Y

Theorem

A surjection $f: X \to Y$ is almost $\pi g D\alpha$ -closed if and only if for each subset S of Y and each U \in RO(X) containing f⁻¹(S) there exists a $\pi g D\alpha$ -open set V of Y such that S \subset V and f⁻¹(V) \subset U. **Proof**

Necessity, suppose that f is almost $\pi gD\alpha$ closed. Let S be a subset of Y and U $\in RO(X)$ containing f⁻¹(S). If V = Y - f(X - U), then V is a $\pi gD\alpha$ -open set of Y such that S \subset V and f⁻¹(V) \subset U.

Sufficiency, Let F be any regular closed set of X. Then $f^{-1}(Y - f(F)) \subset X - F$ and $X - F \in RO(X)$. There exists $\pi gD\alpha$ -open set V of Y such that $Y - f(F) \subset V$ and $f^{-1}(V) \subset X - F$. Therefore, we have $f(F) \supset Y - V$ and $F \subset X - f^{-1}(V) \subset f^{-1}(Y - V)$. Hence we obtain f(F) = Y - V and f(F) is $\pi gD\alpha$ -closed in Y which shows that f is almost $\pi gD\alpha$ -closed.

Preservation Theorem Theorem

If $f : X \rightarrow Y$ is an almost $\pi g D\alpha$ -continuous, rc-preserving injection and Y is quasi $D\alpha$ -normal then X is quasi $D\alpha$ -normal.

Proof

Let A and B be any disjoint π -closed sets of X. Since f is an rc-preserving injection, f(A) and f(B) are disjoint π -closed sets of Y. Since Y is quasi D α -normal, there exist disjoint D α -open sets U and V of Y such that f(A) \subset U and f(B) \subset V.

Now if G = Int(CI(U)) and H = Int(CI(V)). Then G and H are regularly open sets such that $f(A) \subset$ G and $f(B) \subset$ H. Since f is almost $\pi g D \alpha$ -continuous, f^{-1} (G) and $f^{-1}(H)$ are disjoint $\pi g D \alpha$ -open sets containing A and B which shows that X is quasi $D \alpha$ -normal.

Theorem

If f: $X \rightarrow Y$ is π -continuous, almost $D\alpha$ closed surjection and X is quasi $D\alpha$ -normal space then Y is $D\alpha$ -normal.

Proof

Let A and B be any two disjoint closed sets of Y. Then f⁻¹(A) and f⁻¹(B) are disjoint π -closed sets of X. Since X is quasi D α -normal, there exist disjoint D α -open sets of U and V such that f⁻¹(A) \subset U and f⁻¹(B) \subset V. Let G = Int(CI(V)) and H = Int(CI(V)). Then G and H are disjoint regularly open sets of X such that f⁻¹(A) \subset G and f⁻¹(B) \subset H. Set K = Y - f(X - G) and L = Y - f(X - H). Then K and L are D α -open sets of Y such that $A \subset K, B \subset L, f^{-1}(K) \subset G, f^{-1}(L) \subset$ H. Since G and H are disjoint, K and L are disjoint. Since K and L are D α -open and we obtain A \subset Int^D_{α}(K), B \subset Int^D_{α}(L) and Int^D_{α}(K) \cap Int^D_{α}(L) = ϕ . Therefore Y is D α -normal.

P: ISSN No. 2231-0045

E: ISSN No. 2349-9435

Theorem

Let $f: X \to Y$ be an almost π -continuous and almost $\pi g D\alpha$ -closed surjection. If X is quasi $D\alpha$ normal space then Y is quasi $D\alpha$ -normal.

Proof. Let A and B be any disjoint π -closed sets of Y. Since f is almost π -continuous, $f^{-1}(A)$, $f^{-1}(B)$ are disjoint closed subsets of X. Since X is quasi D α -normal, there exist disjoint $D\alpha$ -open sets U and V of X such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$.

Let G = Int(CI(U)) and H = Int(CI(V)). Then G and H are disjoint regularly open sets of X such that $f^{-1}(A) \subset G$ and $f^{-1}(B) \subset H$. By Theorem 4.5, there exist $\pi g D \alpha$ -open sets K and L of Y such that $A \subset K$, $B \subset L$, $f^{-1}(K) \subset G$ and $f^{-1}(L) \subset H$. Since G and H are disjoint, so are K and L by Theorem 2.14, $A \subset Int^{D}_{\alpha}(K)$, $B \subset Int^{D}_{\alpha}(L)$ and $Int^{D}_{\alpha}(K) \cap Int^{D}_{\alpha}(L)$

= ϕ . Therefore Y is guasi D α -normal.

Corollary

If $f: X \rightarrow Y$ is almost continuous and almost closed surjection and X is a normal space, then Y is quasi $D\alpha$ -normal.

Proof

Since every almost closed function is almost $\pi g D\alpha$ -closed so Y is quasi $D\alpha$ -normal.

Conclusion

The notion of quasi $D\alpha$ -normal in topological spaces has been generalized and obtain characterizations and preservation theorems of quasi $D\alpha$ -normal.

References

 Arockiarani and C. Janaki, πgα-closed sets and quasi α-normal spaces, Acta Ciencia Indica, Vol. XXXIII M. No. 2, (2007), 657-666.

- Periodic Research 2. J. Dontchev and T. Noiri, Quasi-normal spaces
- J. Doncrev and T. Noin, Quasi-normal spaces and πg-closed sets, Acta Math. Hungar. 89(3)(2000), 211-219.
- Dunham, W., A new closure operator for non-T₁ topologies, Kyungpook Math. J. 22(1982), 55 -60.
- N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19(1970),89-96.
- H. Maki, R. Devi and Balachandran K., Generalized α-closed sets in topology, Bull. Fukuoka Univ. ed. Part III 42 (1993), 13-21.
- T. Noiri, Mildly normal spaces and some functions. Kyungpook Math. J. 36(1996),183 -190.
- O Njastad, On some class of nearly open sets, Pacific. J. Math., 15(1965), 961-970.
- S.Reena, F.Nirmala Irudayam, A new weaker form of πgb- continuity, International J. of Innovative Research in Sci., Engineering and Tech.Vol. 5, No.5 (2016) ,8676-8682.
- 9. Robert, A., Missier S. P., On semi*-closed sets, Asian J. Engineering Math.4(2012),173-176.
- M. K. Singal and A. R. Singal, Almost continuous mappings, Yokohama Math. J. 16(1968), 63-73.
- O.R. Sayed, A.M. Khalil, Some applications of Dα-closed sets in topological spaces, Egyptian J. of Basic and Applied Sci. (2015),doi: 10.1016/j, 2015.07.005,1-9.
- M.H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375-381.
- 13. Zaitsev V., On certain classes of topological spaces and their biocompactifications, Dokl Akad Nauk SSSR 178(1968), 778-779.